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Secondary organic aerosol (SOA)
•

 

Globally: ~10-40% of organic aerosol is secondary [Kanakidou et al., 2005]

•

 

Urban areas: ~50-80% [Kanakidou et al., 2005]

•

 

SOA precursors 
–

 

Biogenic emissions (isoprene, monoterpenes, sesquiterpenes)
–

 

Anthropogenic emissions (aromatic hydrocarbons)

Henze et al., 2007

Emission SOA Production
[Tg / y] [Tg / y]

aromatics 19 3.7
terpenes 153 12
alcohols 41 1.9

sesquiterpenes 15 2.3
isoprene 461 ?

Total 689 19.9

Hydrocarbon



Caltech environmental chambers

•

 

2 Teflon chambers, 28 m3

 

each

•

 

Differential Mobility Analyzer (DMA): 
particle size distribution, volume

•

 

Time-of-flight Aerodyne Aerosol Mass 
Spectrometer (AMS): particle mass, 
composition

•

 

GC-FID: hydrocarbon

•

 

Proton Transfer Reaction Mass 
Spectrometer (PTR-MS): hydrocarbon, 
reaction products

•

 

Filter samples: off-line chemical analysis

•

 

O3

 

, NOx

 

, RH, T



Oxidation of biogenic hydrocarbons

Ozonolysis:
•

 

T=20oC, RH<10%
•

 

OH Scavenger: cyclohexane
•

 

(NH4

 

)2

 

SO4 seed
•

 

Reaction initiated upon addition of O3

Photooxidation:
•

 

T=20-22oC, RH~50%
•

 

HONO as OH precursor: dropwise

 
addition of

 

1% NaNO2

 

into 10%

 

H2

 

SO4
•

 

(NH4

 

)2

 

SO4 seed 
•

 

Reaction initiated by irradiation with 
UV lights



α-pinene ozonolysis

•

 

SOA is formed from the condensation of first-generation products and the first oxidation step 
is the rate-limiting step

•

 

Organic acids have been identified as major particle-phase products: monocarboxylic

 

acids 
(pinonic

 

acid and norpinonic

 

acid), dicarboxylic

 

acids (pinic

 

acid and norpinic

 

acid), and 
hydroxy pinonic

 

acid  [e.g. Yu et al., 1999]

•

 

Jenkin et al. [2000] proposed pinic

 

and hydroxy pinonic

 

acid are first-generation products, 
which is consistent with our study



Compounds with one double bond



Terpinolene ozonolysis

•

 

Terpinolene has multiple double bonds, so its first-generation products formed are still 
unsaturated, and they will further react with the ozone in the chamber to produce additional 
condensable products

•

 

Further oxidation of first-generation products contributes significantly to SOA and this oxidation 
step may also be rate-limiting 

O

O3 O3 Condensable 
products



Time dependent growth vs. Final SOA growth
 α-pinene ozonolysis

•

 

Time-dependent data overlap remarkably well with the final SOA growth

 

curve
–

 

Odum equation (as well as the growth curve equation) is valid for the final growth as well 
as the time-dependent data
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Time dependent growth vs. Final SOA growth
 terpinolene ozonolysis

•

 

Time-dependent growth curves and final growth curve do not overlap; time-

 
dependent growth curves show clearly the contribution of the secondary reactions

•

 

Cannot fit the time-dependent growth curves for terpinolene ozonolysis with Odum 
equation, confirming that this model is only valid when the data

 

represent final 
SOA growth



Conclusions

•

 

Growth stops when all hydrocarbon is 
consumed

–

 

First step is rate-limiting
–

 

SOA formed from nonvolatile first-

 
generation products

Compounds with 

1 double bond

Compounds with

> 1 double bond

•

 

Growth continues after all hydrocarbon is 
consumed

•

 

Aerosol formed from further oxidation of 
first-generation products and this second 
oxidation step may also be rate-limiting



Effect of NOx

 

level on SOA Formation from 
Photooxidation of Biogenic Hydrocarbons

Presenter�
Presentation Notes�
Now we move on to the second topic, which is on…�



Isoprene

•

 

Global emissions of ~500 Tg/year [Henze et al., 2007]

•

 

First-generation oxidation products: all are volatile, not expected to

 

partition into the 
aerosol phase

•

 

Pandis et al. [1991], Edney et al. [2005] observed no SOA formation from irradiation 
of isoprene/NOx

 

mixtures 

•

 

Possible contributions of isoprene to organic aerosol by heterogeneous chemistry 
[Limbeck et al., 2003], [Claeys et al., 2004], [Edney et al., 2005]



Experimental conditions

•

 

Ammonium sulfate seed; T~25oC, RH<10%

•

 

Low-NOx experiments 
–

 

Radical source: H2

 

O2

 

+ hν

 

→ OH + OH

–

 

Peroxy radicals react with HO2

•

 

High-NOx

 

experiments 
–

 

Radical source: HONO + hν

 

→ OH + NO
–

 

NOx

 

is produced as side product 
–

 

Peroxy radicals react with NO



Isoprene and SOA formation

methacrolein



Isoprene: NOx

 

dependence

•

 

Decrease in SOA yield at high NOx [Pandis et al. 1991; Zhang et al., 1992; 
Hurley et al., 2001; Johnson et al., 2004; Song et al., 2005; Presto et al., 2005]

40-45 ppb isoprene



Growth curve: α-pinene photooxidation
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•

 

Same NOx

 

dependence as isoprene: higher NOx

 

, lower SOA growth
•

 

SOA formed from the condensation of first-generation products and the first oxidation step is rate-limiting
•

 

H2

 

O2

 

+NO: Multiple SOA formation steps; α-pinene only has one double bond, further SOA growth by
–

 

Particle-phase reaction
–

 

Further gas-phase reaction of reactive oxidation products (aldehydes, furans

 

etc)



Peroxy radical chemistry

Hydrocarbon

OH

RO2

RO + NO2 RONO2

NO NO

HO2 ROOH + O2

• Small alkoxy radical easily fragmented

• Organic nitrates relatively volatile [Presto et al., 2005]

•

 

Peroxides: important SOA components [Bonn et al., 2004; Docherty et al., 
2005]

Fragments/

Carbonyls



Growth curve: longifolene photooxidation

• Reversed NOx

 

dependence: higher NOx

 

, higher SOA growth

• High-NOx

 

: maximum yield = 100-120%

• Low-NOx

 

: constant yield = 75%
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Longifolene: NOx dependence

• Low NOx

 

:

 

SOA Yield = 75%

• With ~300 ppb NO: SOA Yield = 127%; 
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Longifolene: NOx dependence
~5 ppb longifolene: increase in yield at high NOx
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Aromadendrene: NOx dependence

~5 ppb aromadendrene: increase in yield at high NOx

100

80

60

40

20

0

Y
ie

ld
 (%

)

5004003002001000
NOx (ppb)



Isomerization of alkoxy radicals

Hydrocarbon

OH

RO2

RO + NO2 RONO2

NO NO

HO2 ROOH + O2

Isomerization
Less volatile products

Fragments/

 
Carbonyls

R2R1

O

R2R1

OH



Isomerization of alkoxy radicals

•

 

SOA growth from large alkanes at ppm

 

levels of NO [Lim et al., 2006]

Lim et al., 2006



Organic nitrates: UPLC/ESI-TOFMS

•

 

Extracted ion chromatograms shows the presence of acidic nitrates in longifolene SOA



Conclusions

•

 

Isoprene is an important SOA precursor (SOA: 14 Tg

 

/ year, Henze et al., 2007)
–

 

Condensable products are second-generation

•

 

Change in NOx

 

dependence going from isoprene to sesquiterpene
–

 

Isoprene (C5

 

H8

 

) and α-pinene (C10

 

H16

 

): SOA yield decreases at high NOx

–

 

Longifolene and aromadendrene (C15

 

H24

 

): SOA yield increases at high NOx

•

 

Isomerization of alkoxy radicals and formation of nonvolatile organic nitrates could be 
an efficient channel of SOA formation (for large hydrocarbon precursors



SOA Formation from Photooxidation of 
Aromatic Hydrocarbons



Background

•

 

Field studies suggest higher SOA formation than models predict [De Gouw 
et al., 2005; Volkamer et al., 2006]

–

 

SOA formed from anthropogenic sources is higher than currently thought

•

 

SOA formation from aromatic hydrocarbons
–

 

Mechanisms poorly understood
–

 

Poor carbon balance, typically < 50% [Calvert et al., 2002]
–

 

SOA yields vary with different NOx

 

levels [Hurley et al., 2001; Johnson et al., 
2005; Martin-Reviejo et al., 2005, Song et al., 2005]



Previous studies
•

 

Irradiation of aromatics/NOx

 

mixture [Hurley et al., 2001; Johnson et al., 2005; Martin- 
Reviejo et al., 2005, Song et al., 2005]

–

 

Changing oxidation conditions over the course of the experiments
–

 

Aerosol growth does not begin until NO approaches zero

•

 

Problems
–

 

Urban areas are high-NOx

 

, so this would suggest no aerosol formed from anthropogenic 
hydrocarbons 

–

 

Experiments with higher levels of NO, and CH3

 

ONO, aerosols observed before NO 
approaches zero [Stroud et al., 2004]
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Goals of experiments
•

 

Study systematically the effect of NOx

 

on SOA formation from selected 
aromatic hydrocarbons

Benzene               Toluene              m-xylene

•

 

Obtain SOA yields at high-

 

and low-NOx conditions (the limiting cases), 
parameterize the NOx

 

dependence for modeling purposes

•

 

Investigate the effect of particle phase acidity on aerosol growth



Experimental conditions

•

 

Ammonium sulfate seed; T~25oC, RH<10%

•

 

Low-NOx experiments 
–

 

Radical source: H2

 

O2

 

+ hν

 

→ OH + OH

–

 

Peroxy radicals react with HO2

•

 

High-NOx

 

experiments 
–

 

Radical source: HONO + hν

 

→ OH + NO
–

 

NOx

 

is produced as side product 
–

 

Peroxy radicals react with NO
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Growth curves: m-xylene
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•

 

SOA yields much higher than high-NOx

 

experiments
•

 

Constant SOA yield implies essentially 
nonvolatile oxidation products (36% yield)

•

 

High-NOx

 

: Growth curves do not overlap, 
multiple rate-limiting steps in SOA formation 
(first step is the slowest)
• Further-generation oxidation products

High-NOx Low-NOx



Growth curves: toluene
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Growth curves: benzene
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Peroxy radical chemistry



Effect of oxidation rate
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• Loss of semivolatiles          rate effect



Loss of semivolatiles

•

 

Loss of semivolatiles (by photolysis, reactions in the gas phase

 

to form 
volatile products, or deposition to chamber walls)

–

 

Lowers the concentration of the gas-phase semivolatile, thereby reducing 
the amount that partitions into the aerosol phase



Seed acidity: acid seed vs. non-acid seed
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• No acid effect observed

• Same observations in m-xylene oxidation



Conclusions: Aromatic SOA

•

 

SOA yields are highly dependent on NOx

 

levels (peroxy radical chemistry)
–

 

High NOx

 

: Usual Odum yield curve behavior (Yield ~ 5 -10%)
–

 

Low NOx

 

: Constant yield (Yield ~30%)

•

 

Condensable compounds are second-generation products (further gas-

 
phase and/or particle-phase reactions)

•

 

No effect of particle phase acidity observed



What do all these studies tell us?
•

 

Growth curve (ΔMo

 

vs. ΔHC) as a powerful approach to infer the general 
mechanism of SOA growth

•

 

Profound effect of NOx

 

level on SOA formation (isoprene, monoterpenes, 
aromatics, sesquiterpenes) 

•

 

Discrepancy between modeled vs. measured SOA:
–

 

Of compounds studied in the laboratory, biogenics

 

are the largest contributor to 
ambient SOA, and isoprene is the most important single precursor

–

 

SOA formation from aromatics significantly higher than previously measured but 
not sufficiently large to rival that of biogenics

 

on a continental scale

–

 

According to recent CMU study (Robinson et al., 2007), SVOCs

 

from primary 
organic aerosol emissions may themselves constitute a major class of SOA 
precursors
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